Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
J King Saud Univ Sci ; 34(4): 101918, 2022 Jun.
Article in English | MEDLINE | ID: covidwho-1702735

ABSTRACT

Mass gathering events commonly encounter environmental challenges that necessitate assurance of water quality and food security. The current outbreak of the coronavirus disease 2019 (COVID-19) call for maintaining safe drinking water supply and providing assessment tools of drinking water quality to avoid contamination in water sources or distribution networks. Arid environmental conditions also add more stress on supplied water to mass gathering events. Herein, we assess the quality of the water supply (desalinated 95% and groundwater 5%) in Makkah city, Saudi Arabia during a mass gathering event in 2019 (9.6 million people) for religious purposes. Fifty five samples were randomly collected from nine different districts of Makkah city, analyzed for TDS, turbidity, pH, EC, free Cl2, Al, Cd, Pb, Cr, F, major ions, coliform and E.coli bacteria and were finally used to estimate the water quality index (WQI). Major ions, trace elements and heavy metals analyses show values below permissible limits in most of the samples, while a few samples show slightly higher values. No bacterial count found in any sample. WQI values of all fifty-five samples were below 50 and were identified as "excellent water". The WQI variations could be attributed to the distribution network conditions rather than a direct impact of adding groundwater with uncontrolled chemical composition. The use of WQI to report the quality of water during mass gathering events to governmental authorities has been proved to be beneficial and should be applied for further mass gathering events worldwide.

2.
Inorg Chem Commun ; 126: 108472, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1051709

ABSTRACT

The salt of Aurintricarboxylic acid (ATA) was utilized in this study to synthesize new alkaline earth metal ion complexes. The analytical results proposed the isolation of mononuclear (Sr+2&Ba+2) and binuclear complexes (Mg+2&Ca+2). These complexes were analyzed by available analytical and spectral techniques. The tetrahedral geometry was suggested for all complexes (SP3) through bidentate binding mode of ligand with each central atom. UV-Vis spectra reveal the influence of L â†’ M charge transfer and the estimated optical band gap mostly appeared close to that for known semiconductors. XRD, SEM and TEM studies were executed for new complexes and reflects the nano-crystallinity and homogeneous morphology. The structural forms of ATA and its complexes were optimized by DFT/B3LYP under 6-31G and LANL2DZ basis sets. The output files (log, chk &fchk) were visualized on program screen and according to numbering scheme, many physical features were obtained. It is worthy to note that, a virtual simulation for the inhibition affinity towards COVID-19 proteins as proactive study before the actual application, was done for ATA and its complexes. This was done in addition to drugs currently applied in curing (Hydroxychloroquine & Lopinavir), for comparison and recommendation. Drug-likeness parameters were obtained to evaluate the optimal pharmacokinetics to ensure efficacy. Furthermore, simulated inhibition for COVID-19 cell-growth, was conducted by MOE-docking module. The negative allosteric binding mode represents good inhibitory behavior of ATA, Ba(II)-ATA complex and Lopinavir only. All interaction outcomes of Hydroxychloroquine drug reflect unsuitability of this drug in treating COVID-19. On the other hand, there is optimism for ATA and Lopinvir behaviors in controlling COVID-19 proliferation.

SELECTION OF CITATIONS
SEARCH DETAIL